Use of Genome knowledge to feed the worlds poor

Potato genome sequence 2011

Case study – potato late blight Indigenous community concerns

- Gota (late blight) causes significant losses
- We apply fungicides more than once a week
- Most of our profits go for fungicides
- Our children eat lots of pesticides and they get sick

Qualitative & Quantitative Resistance in plants/potato

MONOGENIC (*R*-genes) POLYGENIC (*RR*-genes)

Sporulation surrounds lesion area in initial infection state

Sporulation is not on leaflets in advanced infection states

Sporulation is present on stem lesions

Qualitative Resistance *R* genes reported = 21

R gene	Solanum species ^b	Origin ^c	Chr ^d			
<i>R1</i> family						
R1	demissum	Mexico	V			
R2 family						
R2	demissum	Mexico	IV			
Rpi-blb3	bulbocastanum	Mexico	IV			
Rpi-abpt	Unknown ^e	Mexico	IV			
R2-like	edinense	Mexico	IV			
Rpi-edn1.1	edinense	Mexico	IV			
Rpi-snk1.1	schenckii	Mexico	IV			
Rpi-snk1.2	schenckii	Mexico	IV			
Rpi-hjt1.1	hjertingii	Mexico	IV			
Rpi-hjt1.2	hjertingii	Mexico	IV			
Rpi-hjt1.3	hjertingii	Mexico	IV			
Rpi-mcd1	microdontum	Argentina	IV			
<i>R3a</i> family						
R3a	demissum	Mexico	XI			
Rpi-sto2	stoloniferum	Mexico	XI			
<i>R4</i> family						
<i>R4</i>	demissum	Mexico	XI			
<i>Rpi-blb1</i> family						
Rpi-blb1, RB	bulbocastanum	Mexico	VIII			
Rpi-sto1	stoloniferum	Mexico	VIII			
Rpi-pta1	stoloniferum ^g	Mexico	VIII			
<i>Rpi-blb2</i> family						
Rpi-blb2	bulbocastanum	Mexico	VI			
Rpi-vnt1 family						
Rpi-vnt1.1	venturii	Argentina	IX			
Rpi-vnt1.2	venturii	Argentina	IX			
Rpi-vnt1.3	venturii	Argentina IX				

Not durable

Pathogen produces Effector protein (AVR)

> Host produces R proteins by *R*-genes

Effecter triggered immunity Qualitative resistance Hypersensitive reaction

(Vleeshouwers et al., 2011)

Quantitative Resistance: QTLs = 211 Resistance mechanisms unknown (Black Box)

So far, **211 QTLs** have been identified, based on 29 QTL maps for resistance to foliage, stem and tubers, with phenotypic variance of 4-63%.

(Danan et al. 2011)

Quantitative Resistance Improvement (durable)

- Step I: Identification of disease resistance QTLs and genes
 - Molecular marker assisted selection (MAS)
 - Genome wide association studies (GWAS)
 - Metabolo-genomics of potato genotypes
- Step II: Gene function elucidation OMICs
- Step III: Transfer to elite cultivars Cisgenics

Project Philosophy

We have our own way of life, but we welcome your help to improve our food security

OMICs: Forward and Reverse genetics

Kushalappa and Gunnaiah 2013

Inoculation and incubation (spot inoculation to reduce expt. error)

Resistance phenotype: Disease severity assessment

Lesion diameter Area

Lesion length Area

Figure 1. Late blight disease severity progress on resistant (F06025) and susceptible (Shepody) potato genotypes. Disease severity was quantified as lesion diameter (mm), at three day intervals.

Sample collection Metabolomics & proteomics

Leaves & Stems
72 h post inoculation
Ground in liquid nitrogen

Extraction - Metabolites Problems and progress

- No single solvent can extract all the metabolites
- Methanol + water
 - Most of the metabolites are extracted (semipolar)

Biochemical analysis: LC-ESI-LTQ-Orbitrap (High resolution mass spectrometer)

Peak deconvolution: dataset: XCMS-Output

	Α	В	С	D	E	F	G	Н		J	K		L	Μ	N	0	P
1	name	fold	mzmed	mzmin	mzmax	rtmed	rtmin	rtmax	npeak	k	v		metlin	LO_20080318	LO_20080	LO_2008031	LO_20080318_0
2	M89T31	Inf	88.96807	88.96807	88.96807	30.8442	30.8442	30.8442	2	0	1	2	http://metlin.scripps.edu/metabo_list.php?mass_mit	0	0	5835170.5	5835170.487
3	M98T31	Inf	97.9685	97.9685	97.9685	30.8442	30.8442	30.8442	2	0		2	http://metlin.scripps.edu/metabo_list.php?mass_mii	0	0	1308435	1308435.046
4	M123T11	19,41283	122,9288	122,9288	122 9288	117,6339	117,6339	117,6339	2	2		0	http://metlin.scripps.edu/metabo_list.php?mass_mi	1643182.391	1643182	84644,156	84644, 15621
5	M126T15	10 11179	125 986	125 986	125 986	158 6538	158 6538	158 6538	2	2		0	http://metlin.scripps.edu/metabo_list.php?mass_mi	16735064 65	16735065	1655005 7	1655005 671
6	M128T32	46 8373	127 9802	127 9802	127 9802	31 7739	31 7739	31 7739	2	0		2	http://metlin.scripps.edu/metabo_list.php?mass_mi	35814 62955	35814 63	1677460 7	1677460 711
7	M128T11	8 106151	127.9835	127 9835	127 9835	116 7139	116 7139	116 7139	2	2		0	http://metlin.scripps.edu/metabo_list.php?mass_mi	31971952.09	31971952	39//159 /	39//159 366
8	M129T11	1/ 15/18	129.0266	129 0266	129 0266	115 7345	115 7345	115 7345	2	2		0	http://metlin.scripps.edu/metabo_list.php?mass_mi	7678711 564	7678712	542504 91	542504 9092
a	M131T00	5 035987	120.0200	120.0200	130 9876	98 68/1	98 68/1	98 68/1	2	2		0	http://metlin.scripps.edu/metabo_list.php?mass_mi	61958780.93	61958781	10317/96	10317/96.07
10	M120T11	7 363356	121 0522	121 0522	121 0522	119 5643	119 5642	119 5642	2	2		0	http://metlin.scripps.edu/metabo_list.php?mass_mi	12020646-21	13020646	1770040	1770040 021
10	M420T40	14 70506	120 1017	120 1017	101.0022	10.0040	10.0043	10.0040	2	2		0	http://metiin.scripps.edu/metabo_list.php?mass_mii	13020040.31	1 10E 109	9006244.6	9006211 614
10	N1132110	10.01010	132.1017	132.1017	132.1017	104.724	104.724	104.724	2	2		0	http://metiin.scripps.edu/metabo_list.php?mass_mii	119050333.1	1.190+00	0090311.0	0090311.014
12	MADATAA	12.21010	132.9502	132.9502	102.9002	119,4045	119.4045	119.4045	2	2		0	http://metiin.scripps.edu/metabo_list.php?mass_mii	405046230.5	4.050+00	33151270	331512/0.49
13	N1134111	1.744102	133.9597	133.9597	133.9597	116.5643	116.5643	110.5643	2	2		0	http://metiin.scripps.edu/metabo_list.pnp?mass_mi	1406023.263	1408023	4247471.2	4247471.19
14	M135112	13.58004	134.9587	134.9587	134.9587	120.3543	120.3543	120.3543	2	2		0	http://metlin.scripps.edu/metabo_list.php?mass_mi	4541/6/5.1/	4541/6/5	3344444.2	3344444.161
15	M136118	14.11849	136.1106	136.1106	136.1106	185.7043	185.7043	185.7043	2	2		0	http://metlin.scripps.edu/metabo_list.php?mass_mii	4511548.3/1	4511548	319548.96	319548.9644
16	M137111	38.45625	136.9568	136.9568	136.9568	119.4845	119.4845	119.4845	2	2		0	http://metlin.scripps.edu/metabo_list.php?mass_mii	16241208.13	16241208	422329.48	422329.4752
17	M137T31	1.386795	136.9608	136.9608	136.9608	30.8442	30.8442	30.8442	2	0		2	http://metlin.scripps.edu/metabo_list.php?mass_mii	2215903.198	2215903	3073004.2	3073004.225
18	M138T18	28.88862	138.0548	138.0548	138.0548	185.7043	185.7043	185.7043	2	2	!	0	http://metlin.scripps.edu/metabo_list.php?mass_mi	9373485.271	9373485	324469.83	324469.8267
19	M138T82	1.294953	138.066	138.066	138.066	81.584	81.584	81.584	2	2	2	0	http://metlin.scripps.edu/metabo_list.php?mass_mi	4066823.899	4066824	3140517.8	3140517.793
20	M140T11	58.03697	139.9791	139.9791	139.9791	112.9439	112.9439	112.9439	2	2	!	0	http://metlin.scripps.edu/metabo_list.php?mass_mi	14162833.82	14162834	244031.24	244031.2434
21	M140T18	7.409712	140.0681	140.0681	140.0681	183.8639	183.8639	183.8639	2	2	2	0	http://metlin.scripps.edu/metabo_list.php?mass_mii	34348852.04	34348852	4635652.7	4635652.656
22	M142T30	128.3109	141.9584	141.9584	141.9584	29.904	29.904	29.904	2	0		2	http://metlin.scripps.edu/metabo_list.php?mass_mii	102354.5808	102354.6	13133205	13133204.9
23	M142T11	86.46465	141.9586	141.9586	141.9586	115.7345	115.7345	115.7345	2	2	2	0	http://metlin.scripps.edu/metabo_list.php?mass_mii	165717866.2	1.66E+08	1916596.7	1916596.709
24	M144T11	47.51712	143.959	143.959	143.959	115.7345	115.7345	115.7345	2	2	2	0	http://metlin.scripps.edu/metabo_list.php?mass_mii	22262860.73	22262861	468522.93	468522.9298
25	M144T32	7.702688	143.9734	143.9734	143.9734	31.7739	31.7739	31.7739	2	0		2	http://metlin.scripps.edu/metabo_list.php?mass_mii	364312.2249	364312.2	2806183.4	2806183.388
26	M146T11	68.84263	145.9654	145.9654	145.9654	113.9339	113.9339	113.9339	2	2	2	0	http://metlin.scripps.edu/metabo_list.php?mass_mii	13152168.12	13152168	191046.85	191046.8519
27	M147T11	11.82794	146.9747	146.9747	146.9747	116.7139	116.7139	116.7139	2	2	2	0	http://metlin.scripps.edu/metabo_list.php?mass_mii	101670753.2	1.02E+08	8595809.3	8595809.319
28	M148T11	12.98288	147.9811	147.9811	147.9811	116.7139	116.7139	116.7139	2	2	2	0	http://metlin.scripps.edu/metabo_list.php?mass_mit	3244844.729	3244845	249932.64	249932.6428
29	M150T11	38.00306	149.9973	149.9973	149.9973	118.5643	118.5643	118.5643	2	2	2	0	http://metlin.scripps.edu/metabo_list.php?mass_mii	37074571.15	37074571	975568.01	975568.01
30	M151T11	13.65674	150.9699	150.9699	150.9699	116.7139	116.7139	116.7139	2	2	2	0	http://metlin.scripps.edu/metabo_list.php?mass_mii	2914071.412	2914071	213379.8	213379.7974
31	M153T11	33.62651	152.9491	152.9491	152.9491	113.9339	113.9339	113.9339	2	2	2	0	http://metlin.scripps.edu/metabo_list.php?mass_mii	1789179.352	1789179	53207.413	53207.41333
32	M154T11	8.172404	153.9818	153.9818	153.9818	112.0641	112.0641	112.0641	2	2	2	0	http://metlin.scripps.edu/metabo_list.php?mass_mii	3208394.283	3208394	392588.79	392588.7876
33	M155T83	2.061696	154.9778	154,9778	154,9778	82.554	82.554	82.554	2	2	2	0	http://metlin.scripps.edu/metabo_list.php?mass_mii	6678562.075	6678562	3239353.7	3239353.685
34	M156T18	412.3029	156.0421	156.0421	156.0421	185,7043	185,7043	185,7043	2	2		0	http://metlin.scripps.edu/metabo_list.php?mass_mii	210461120.8	2.1E+08	510452.73	510452,7345
35	M156T45	134,0888	156.0507	156.0507	156.0507	44,714	44,714	44,714	2	0		2	http://metlin.scripps.edu/metabo_list.php?mass_mi	720346.456	720346.5	96590375	96590374.92
36	M157T18	8.528035	157.0453	157.0453	157.0453	185,7043	185,7043	185,7043	2	2		0	http://metlin.scripps.edu/metabo_list.php?mass_mi	7868813,169	7868813	922699.46	922699 4613
37	M158T18	147 2994	158 0401	158 0401	158 0401	186 5639	186 5639	186 5639	2	2		0	http://metlin.scripps.edu/metabo_list.php?mass_mi	12119022 47	12119022	82274 736	82274 73625
38	M158T45	16 71503	158 0513	158 0513	158 0513	44 714	44 714	44 714	2	0		2	http://metlin.scripps.edu/metabo_list.php?mass_mi	288874 2012	288874 2	4828542 3	4828542 323
39	M159T97	13 075	158 9849	158 9849	158 9849	96 8038	96 8038	96 8038	2	2		0	http://metlin.scripps.edu/metabo_list.php?mass_mi	25318502 71	25318503	1936405 7	1936405 718
10	M160T95	20 62193	159 973	150.0040	150.0040	9/ 8837	94 8837	94 8837	2	2		0	http://metlin.scripps.edu/metabo_list.php?mass_mi	11516549 62	11516550	558461 37	558461 3741
40	M161T10	9 546419	161 0121	161 0121	161 0121	00.6238	00.6238	00 6238	2	2		0	http://metlin.scripps.edu/metabo_list.php?mass_mi	16258445.31	16258445	1703093.6	1703003 610
41	M162T27	5.040419	162 0697	162 0697	162 0697	27 0220	27 0220	27 0220	2	2		2	http://metiin.scripps.edu/metabo_list.php?mass_fill	13/0/70 / 24	13/0/70	7820209 5	7820309 526
42	M162T44	36 1400	162.0007	162.0007	162.0007	118 5640	118 5642	118 5642	2	0		2	http://metain.scripps.edu/metabo_list.php?mass_mil	1340470.424	1340470	1200122 9	1020300.030
4.0	M164T11	20.1400	162.0001	162.0091	162.0091	110.0040	110.0040	110.0043	2	2		0	http://metain.scripps.edu/metabo_list.php?mass_mil	43373321.03	43373521	11200132.0	1105007 /0
44	M164T11	32.13913	103.9/00	103.9700	103.9700	10.0043	100.0043	100.0043	2	2		0	http://metiin.scripps.edu/metabo_list.php?mass_mil	20100001.22	2007405	1125297.5	1125291.40
45	101104118	10.44214	104.07.39	104.07.39	104.0739	100.4542	100.4542	100.4542	2	2		0	http://metiin.scripps.edu/metabo_list.pnp?mass_mil	1031404.150	1091465	30400.507	30400.50667
H.	(→ > I e	xample 🍂	2										14				► I

Information extraction: Metabolite ID (Based on MS1)

(Metabolites 1-24 of 24)

METLIN

Metabolites

Change Query

Resistance related constitutive and induced metabolites

- Statistical analysis: *t*-test
- Fold change in resistant genotype relative to susceptible genotype
- RRC = RM/SM
- RRI = (RP/RM)/(SP/SM)

Cell wall thickness – prevent pathogen spread

RR metabolite Cell wall thickening

Hydroxycinnamic acid amides (HCAAs) = high fold change

Resistant cultivar Pathogen inoculated

Susceptible cultivar Pathogen inoculated

Cell wall thickening

Multiple disease/pest resistance?

Candidate genes involved in Cell wall thickening

Amino acid substitution leads to instability of 4-coumaryl ligase protein

Substitution of Alanine (A) with Valine (V) at position 158 leads to decrease in protein stability by $\Delta\Delta G$ = -0.80 (negative value)

Where as,

Substitution of Histidine (H) with Aspartic acid (D) at position 298 leads to decrease in protein stability by $\Delta\Delta G$ = -0.70

ΔΔG- Free energy
 ΔΔG: ΔG(New Protein)-ΔG(Wild Type) in Kcal/mol
 ΔΔG<0: Decrease Stability
 ΔΔG>0: Increase Stability
 (Capriotti et al. 2006)

Gene resistance function validation based on VIGS

RR Gene not silenced

Resistant

RR Gene silenced

RR Metabolomics

Disease severity

Pathogen biomass

Knowledge application: Plant resistance improvement

- Transfer of RR genes to elite cultivars
 Marker Assisted Breeding
 Cisgenics (gene transfer between
 - sexually compatible genotypes)

Second phase?

Cisgenic and transgenic to improve potato resistance to late blight

Wild potato

Gene replacement

Elite potato cultivar

Tissue culture Potato plant

Cisgenic potato plants

Late blight Bacteria or resistance gene Other organisms (http://www.glogster.com)

Elite potato cultivar

Tissue culture Potato plant

Transgenic potato plants

Thank you all

McGill University

Yogendra

Mosa Pushpa

Sarkar

Liyao-Ji

Universidad Nacional de Colombia

Sarmiento

Rodriguez

Mosquera