Emerging Technologies for Food Processing

Hosahalli S. Ramaswamy

Professor

Department of Food Science

McGill University

On food security through potato production and human nutrition Bogota, Colombia, June 24-25, 2013

Presentation Outline

Food Security

Food Safety - Microbiological Issues

Food Processing Strategies
Thermal Processing, freezing, drying
Novel approaches in thermal processing
Non-Thermal Processing

Affordable technologies - Colombian context

Food Security

Multi-Component Concept Linked To

Production adequacy
Procurement (transport, distribution)
Availability (storage, preservation)
Food Safety (processing)
Food Quality (processing, formulations)
Food diversity (processing)

Food Processing Objectives Primary: Preservation

- **✓** Prevent undesirable changes
 - **✓** Wholesomeness
 - **✓** Nutritive value
 - **✓** Sensory qualities
- **✓** Control activities
 - **✓** Chemical
 - **✓ Biochemical & Physiological**
 - **✓** Microbiological

Food Processing Other objectives

- 1. Product Diversification
- 2. Value addition
- 3. Convenience Foods
- 4. Marketing Needs
- 5. Ingredients Isolation/
 Synthesis
- 6. Non-conventional Foods

Food Processing & Handling Objectives

Primary

Safety & Stability (Preservation)

Safety Concern

Eliminate or Disable Pathogens

Stability

Eliminate or Disable Spoilage Organisms

Inactivate enzymes

Suppress chemical reactions

Micro-organisms & Food

- Food Pathogens public health concern because they enter the human system through food and cause various disease
- Food Poisoning Micro-organisms these are not pathogens but produce toxins in foods which when ingested cause harm to public health
- Food Spoilage Microorganisms these are not of public health concern, but they cause spoilage of foods

Common Food Pathogens

- Clostridium perfringens; Campylobacter jejuni,
- Salmonella spp.; Salmonella
- Escherichia coli O157:H7; Bacillus cereus
- Listeria monocytogenes; Shigella spp.
- Staphylococcus aureus
- Streptococcus
- Vibrio; Yersinia

Micro-organisms of Safety Concern

Exotoxins of concern

- Clostridium botulinum
- Clostridium perfringens
- Staphylococcus aureus
- Bacillus cereus

- Mycotoxins: Aflatoxin
- Natural Toxins: Alkaloids

Numerous Outbreaks (both fresh and inadequately processed foods, examples)

Lebanon Bologna - E. coli O157:H7, 2011

Hazelnuts – *E. coli* O157:H7, 2011

Cheese – E. coli O157:H7, 2010

Shredded Romaine Lettuce from a Single Processing Facility - Escherichia coli O145, 2010

Beef from National Steak and Poultry - E coli O157:H7, 2010

2011 United States listeriosis outbreak from cantaloupes

2011 United States salmonellosis outbreak in cantaloupe infected with **Salmonella** Panama from Guatemala.

2010 Louisiana Clostridium perfringens outbreak

2010 Multihospital Outbreak of *C. difficile* Infection, Ohio

Microbialogical Basis

Microbial safety and stability is achieved based on combination of factors that depends:

Sensitivity of microbial growth and activity to

Oxygen (aerobic, anaerobic)
pH (*C. botulinum*)
Temperature (thermo, meso, psychro)
Water activity
Spore vs vegetative bacteria

Food Processing Strategies

Addition of Heat: Canning (thermal processing) Removal of Heat: Refrigeration, Freezing Removal of Moisture: Drying, Frying, Extrusion Use of Radiation: Irradiation, UV, Pulsed Light Addition of preservatives Addition of salt and sugar **Fermentation** Alternative Heating Media: Microwave, Ohmic Non-Thermal Processing: HPP, PEF, Ozone,, PL Hurdle Technologies..... and many more

Thermal Processing Principles

Spooilage vegetative formation Spore formers in-active. Shelf-stable products for fruits & acidified foods

Only pathogens
Controlled.
Spores active;
Only short-term
storage at
refrigerated
conditions

Clostridium botulinum; Bot Cook
- 12D Process is implemented.

Spoilage: Mesophiles are killed.

Heat resistant thermophiles are not killed but controlled by storing the product below 30°C

Retort **Systems**

TYPICAL PROCESSING SEQUENCE

► VENT

► STEAM

LOADING

FILL WITH WATER (PRESSURE COOL) DISCHARGE

Fig. 9.10 Hydrostatic vertical continuous bottle sterilzer.

- 1 1st heating stage 2 Water seal and 2nd heating stage
- 3 3rd heating stage
- 4 Sterilization section
- 5 1st cooling stage
- 6 2nd cooling stage
- 7 3rd cooling stage 8 4th cooling stage
- 9 Final cooling stage
- 10 Upper shafts and wheels, individually driven
 - Steam

Quality Optimization in Thermal Processing

Today, consumers demand more than just safe foods!

Illustration of high temperature short time (HTST) heating principle

Quality Optimization in Thermal Processing

• All techniques used improve the heat transfer to the product which reduces the cooking time and hence improve the quality in thermally processed foods

$$q = \frac{kA\Delta T}{x}$$

$$q = h A \Delta T$$

Agitation Processing

◆Two common modes of agitation/rotation

End ov

End over end rotation (Batch Operation)

Axial Rotation
(Continuous Operation)

Food Processing Optimization...

1) Agitation Processing

$$q = h A \Delta T$$

- Improves heat transfer by agitation
 - Improves mixing and heat transfer coefficient
 - Two Types:
 - End-over-end and Axial Agitation

Agitation Processing

*ASEPTIC PROCESSING.

- 3) Thin Profile Processing
- For conduction heating foods

$$q = \frac{kA\Delta T}{x}$$

- Increase surface area
- Reduce thickness

Semi-Rigid Plastic Containers

Future trends in food processing

Applications of novel advanced sterilization techniques

- Microwave heating
- Radio frequency heating
- Ohmic heating

Applications of non-thermal processing techniques

- High Pressure Processing
- Pulsed Electric Field Applications
- Pulsed Light, Irradiation

Novel Methods of Heating

Microwave Heating: Two Modes

Novel Heating Techniques....

Ohmic heating

Also called

- ✓ Direct resistance heating
- ✓ Joule effect heating
- ✓ Electro-conductive heating
- **✓** Electro-resistive heating

Principle

Heat generation occurs when an electric current is passed through an electrically conducting food product.

Typical Time Temperature Profiles under Ohmic Heating Conditions

Quality Optimization: Non-thermal Processing

High Pressure Processing

- An emerging and Novel technology
- Derived from material sciences
- First application Hite (1899)
- Gaining tremendous popularity in recent years

Equipment

HP Dynamics Inc

NC Hyperbaric

STANSTED

ACB

HPP Pilot Plant at McGill

High Pressure Application Areas

- Pasteurization: Juices, milk
- Sterilization: High and low acid foods
- Texture modification: Fish, egg, proteins, starches
- Functional changes: Cheese, yogurt, surimi
- Specialty processes: Freezing, thawing,

fat crystallization, enhancing

reaction kinetics

Refrigeration, Cooling, Freezing

Drying

Edible Films for Shelf life Extension

 Biodegradable & Edible Films or shelflife extension of fresh and cut fruits and vegetables

Affordable Technologies

Conventional thermal processing Thin profile processing Acidified thermal processing **Ohmic heating** Use of edible coating **Extrusion Technology** Many drying concepts – solar, osmotic Many cooling and storage concepts Formulation - blending

Solar water heaters & power generators

Solar cookers

Low cost technologies for home/ community based food products

Commercial Evaporative Coolers

2-Stage or Indirect/Direct Evaporative Cooling

Potato Processing

Cooking - consumption Cold Storage, curing Drying – potato flakes Frying – chips, French fries, patties **Baking Mashed Potato** Potato flour (replacement for cereal flours) Extraction – starch Potato fiber - Resistant Starch (currently under review to be included as fiber)

Thank you for your patience

Gracias por la espera

