Select potato genotypes based on concentration of minerals, nutrients and functional food compounds

- Activity 3.2. Identification of functional foods
- Stan Kubow McGill, Ajjamada Kushalappa McGill
- Objective: To select potato genotypes based on concentration of minerals, nutrients and functional food compounds

Experimental approach

- A total of 42 clones, including 12 advanced yellow clones of UNC, 8 cultivars selected from indigenous communities, and 10 genotypes from *S. phureja* will be analyzed for the presence and relative amounts of phytonutrients
 - non-target analysis, based on metabolomics tool using hybrid mass spectrometry (Bollina et al. 2010; Hall et al. 2008)
- Selected potatoes will be lyophilized, subjected to ethanolic extraction procedures and stored at -80C

Extracts of Polyphenol-rich Potatoes

Simulated human gut model

Digestive enzymes

Bacterial metabolism

Bioactive polyphenolics

Human Colon Cell Culture Model of Inflammatory Bowel Disease

Oxidative Stress

Inflammation

Effects of Digested Potato Extracts on Caco-2 Cells

Materials required

- HPLC supplies (columns, gases, vials, filters)
- User fees for LC and hybrid MS
- Human simulated gut model studies (digestive enzymes, gases, chemicals)
- Cell culture supplies (Caco-2 cells, gases, filters, chemicals)

Requirements from others

Require collaboration for lyophilization of potatoes

 Human simulated gut model studies will require 90% aqueous ethanol extraction of concentrated freeze-dried extract

Shipping of freeze dried material

Start and end time period for experiments

- Delivery of potato extracts (estimated September 2012)
- Polyphenolic characterization of potato extracts via HPLC and MS analyses (September-December, 2012)
- Utilize Dynamic Human Gastrointestinal Model to generate potato polyphenolic digests (January-February, 2012)

Start and end time period for experiments

- Test potato extract digests in Caco-2 cell culture model (March-April, 2012)
- Carry out analyses on inflammatory and oxidative stress markers and metabolomics (May-July, 2012)

Deliverables/milestones

- Determine clones that contain phytochemical composition with the most potent antioxidant and anti-inflammatory properties
- Identification of the clones that could be further investigated regarding their functional health properties that could benefit indigenous communities

Deliverables/milestones and time period

 Provide mechanistic information regarding the key metabolites involved in the antioxidant and antiinflammatory properties of the potato extracts